1. Description

This procedure describes methods for making and evaluating gas metal arc (GMA) fillet welds (MIG fillet welds) on all types of automotive aluminum alloys.

2. Purpose

The purpose of this procedure is to provide industry-accepted requirements for performing high-quality GMA (MIG) fillet welds on aluminum. This procedure is intended for use by professionals who are qualified through training and experience.

3. Referenced Documents

The following documents are considered part of this procedure by reference.

3.1 Procedures
PS01 Personnel Safety

3.2 Other Information
Equipment-specific information
Vehicle-specific repair information
4. Equipment And Material Requirements

4.1 Shielding Gas

A shielding gas of 100% argon is recommended for GMA (MIG) welding automotive sheet aluminum. The flow rate is normally set at 20–50 cfh, or 3–4 psi at the regulator. Welding should not be performed in a draft or wind exceeding 8 kph (5 mph).

4.2 Filler Wire

Filler wire must be compatible with the base metal alloy being joined. Follow the vehicle maker’s recommendations for the specific type of filler wire.

Filler wire thickness is based on the metal thickness being welded. Use the following chart:

<table>
<thead>
<tr>
<th>Metal Thickness</th>
<th>Filler Wire Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 1.6 mm (1/16")</td>
<td>0.6 mm (.025")</td>
</tr>
<tr>
<td>1.6–2.4 mm (1/16–3/32")</td>
<td>0.8 mm (.030")</td>
</tr>
<tr>
<td>3.2 mm (1/8")</td>
<td>0.8 or 1.2 mm (.030" or 3/64")</td>
</tr>
<tr>
<td>4.8 mm (3/16")</td>
<td>1.2 mm (3/64")</td>
</tr>
<tr>
<td>6.3 mm (1/4")</td>
<td>1.2–1.6 mm (3/64–1/16")</td>
</tr>
</tbody>
</table>

Avoid contaminating the filler wire with dirt, dust, moisture, etc. When not in use, the filler rod should be stored in its original container or a sealed, plastic bag. Store in a warm, dry area to avoid condensation.

(1) The preferred filler alloy is shown first.
(2) 6009, 6010, 6013, and 6111 alloys have a high copper content and should not be welded to another 6000 series with 5356 electrode wire.
4. Equipment And Material Requirements (cont’d)

4.3 Wire Feeder
A spool gun or push-pull wire feeder is recommended for GMA (MIG) welding automotive sheet aluminum. Change the gun, drive rolls, and cable liner if the welding machine is not dedicated to aluminum.

4.4 Transfer Mode
Either spray-arc or pulsed-spray is the preferred transfer mode for GMA (MIG) welding automotive sheet aluminum.

4.5 Polarity
Reverse polarity (electrode positive and base metal negative) is recommended for collision repair aluminum welding.

4.6 Welder Settings
Collision repair GMA (MIG) welders operate on either 110- or 220-volt, AC power. The thickness of the aluminum being welded, and the weld position, determines how much voltage and amperage are needed. Refer to the table for approximate settings.

4.7 Special Equipment
Use tools and materials, such as abrasives, that are designated for use only on aluminum, to avoid surface contamination.

A stainless steel wire brush, dedicated for use on aluminum, is recommended for cleaning aluminum before making a weld.

<table>
<thead>
<tr>
<th>Thickness (in)</th>
<th>Position</th>
<th>Amperage</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mm (1/16")</td>
<td>Flat</td>
<td>70–110</td>
<td>15–20</td>
</tr>
<tr>
<td>2 mm (3/32")</td>
<td>Flat H/V/OH</td>
<td>90–150</td>
<td>18–22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110–130</td>
<td>18–23</td>
</tr>
<tr>
<td>3 mm (1/8")</td>
<td>Flat H/V OH</td>
<td>125–150</td>
<td>20–24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110–130</td>
<td>19–23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115–140</td>
<td>20–24</td>
</tr>
<tr>
<td>5 mm (3/16")</td>
<td>Flat H/V OH</td>
<td>180–210</td>
<td>22–26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130–175</td>
<td>21–25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>130–190</td>
<td>22–26</td>
</tr>
</tbody>
</table>
6.1 General Safety
General safety information is in PS01.

6.2 Electric Shock
To prevent injury from electric shock:

- Set the welding machine following the equipment maker’s instructions.
- Make sure cables and wires are in good condition.
- Make sure all connections are in good condition.
- Never place the welding machine in a wet area.
- Never stand in a wet area when welding.
- Never use the top of the welding machine as a table for food, etc.
- Inspect all welding machine plugs and receptacles before each use.
- Wear dry shoes or boots.

6.3 Arc Rays
To prevent eye injuries from ultraviolet exposure:

- Use a face helmet with a filter plate and clear safety lens cover.
- Use at least a grade 10 filter when welding aluminum.
- Say “cover” before striking an arc to alert others in the area.

6.4 Welding Fumes
To prevent injury from exposure to welding fumes:

- Wear an approved welding respirator.
- Use a welding fume extractor.
- Provide ventilation with a fan or other air circulator.

6.5 Welding Sparks
To prevent burns from welding sparks:

- Wear safety glasses with side shields under the welding helmet.
- Wear protective clothing with long sleeves and no cuffs. Fasten shirt top button when welding.

(cont’d)
6. **Personnel Safety (cont’d)**

- Wear leather gloves and leather cape welding sleeves.
- Do not handle metal parts until they have cooled.
- Wear high-top leather shoes or boots.
- Make sure clothing and shoes are free from oil, grease, or other flammable materials.
- Remove all flammable materials from the area to be welded.
- Do not carry matches or butane lighters in pockets.
- Do not weld near parts containing fuel, such as fuel tanks, lines, pumps, etc.
- Keep a fire extinguisher in the work area while welding.

7. **Environmental Safety**

Does not apply.

8. **Vehicle Protection**

8.1 **Electronic Parts**

To protect computers and other sensitive parts from damage:

- Follow the vehicle maker’s recommendations for recording and resetting electronic memory settings, such as radio, seats, etc.
- Ensure that the ignition switch is in the LOCK position.
- Disconnect and isolate the negative battery cable, and disarm the passive restraint system. Follow the vehicle maker’s recommendations.
- Carefully remove computer modules when welding or heating within 300 mm (12”). Some vehicle makers specify greater distances. Protect modules, connectors, and wiring from dirt, heat, static electricity, and moisture.
- Loosen or remove any wiring harnesses or electrical parts that could be damaged during the repair process.

Remove the battery if it is near an area to be welded or heated.

8.2 **Sparks**

To protect surfaces from welding sparks:

- Use welding blankets on surfaces that can be covered.
- Remove interior trim, headliners, upholstery, and other parts if the interior will be exposed to heat or sparks.
9. Repair Procedure

9.1 GMA (MIG) Fillet Weld Procedure

To make a GMA (MIG) fillet weld:

- 1. Clean the mating surfaces to remove oxides and any other residual contaminants that could adversely affect weld quality.
- 2. Clamp the mating surfaces tightly together.
- 3. Make sample test welds on scrap pieces of the same alloy and thickness as the parts to be welded. Make the sample welds in the same position as the welds on the vehicle. See 11.1.
- 4. Visually inspect and destructively test the sample welds to verify the welder settings and the welding technique. See 11.2 and 11.3.
- 5. Locate the work clamp as close to the welding site as possible.
- 6. Make the welds on the actual parts. Weld as far as possible in one pass to avoid defects caused by cold starts. Some vehicle makers recommend preheating the weld area to reduce defects caused by cold starts.
- 7. Dress the welds, as required. Do not reduce the thickness of the surrounding metal.

10. Use Of Recycled (Salvage) Parts

To prepare salvage parts for welding:

- Trim the parts to fit.
- Remove all heat-affected areas.
- Make sure the parts are not deformed along the weld joints.
- Make sure mating surfaces are clean.
11. Inspection And Testing

11.1 Test Welds

Make test welds, before welding on the vehicle, using the same type and thickness metal that will be welded on the vehicle. Make the test welds in the same position as the welds on the vehicle. Visually inspect and destructively test the welds before welding on the vehicle.

Make the test welds on small pieces of flat scrap aluminum, trimmed to about 75 x 125 mm (3 x 5”). Damaged parts that are to be replaced may provide scrap pieces. Lap two pieces together halfway, and make a single fillet weld 55–75 mm (21⁄4–3”) long in the center of each sample.

Note: The recommended practice is to weld as far as possible in one pass to avoid defects caused by a cold start. Some vehicle makers recommend preheating the weld area to reduce defects caused by cold starts. The length of the weld used for making test welds is designed to allow the weld to be destructively tested.

11.2 Visual Inspection Of The Weld

The following visual inspection requirements for bead height, width, and penetration are for welding a 1.2 mm (3⁄64”) 5356-series aluminum coupon on top of a 3 mm (1⁄8”) 5356-series aluminum coupon. The requirements will change slightly for other aluminum alloy types and thicknesses.

The face of the fillet weld must meet these requirements:

- no cracks
- no porosity, skips, or voids
- joint completely filled
- no undercut
- crater completely filled
- bead length of 55–75 mm (21⁄4–3”)
- bead width of 5–10 mm (3⁄16–3⁄8”)
- bead height no greater than 2 mm (3⁄32”)

The back side of the fillet weld must meet these requirements:

- no cracks
- no suck-back
- penetration width no greater than 5 mm (3⁄16”)
- penetration extending no more than 2 mm (3⁄32”) from the bottom

Use a dye penetrant to detect cracks in the weld or base metal. If defects are detected, adjust the welder and welding technique, and repeat the test welds before welding on the vehicle.

(cont’d)
If the vehicle maker recommends the application of a dye penetrant to welds on a vehicle, use the following procedure if a crack, or other defect, is detected:

- 1. Thoroughly remove the dye penetrant to avoid contaminating the surface.
- 2. Remove the defective area. Do not thin the surrounding metal.
- 3. Reweld the area.
- 4. Repeat the visual inspection.

11.3 Destructive Test

Destructively test the sample welds using this procedure:

- 1. Clamp the lower coupon of the weld sample in a vise so that the weld bead is above and parallel to the vise jaws.
- 2. Bend the upper coupon away from the lower coupon.
- 3. If the face of the upper coupon can be bent to contact the face of the lower coupon without breaking, the sample passes.
- 4. If the joint fractures, inspect the weld bead on the lower coupon. To pass inspection, the cross section of the weld must be even and equal to the cross section of the thinnest metal being joined, and must show root fusion. Lack of root fusion appears as a dark oxide line along the base of the weld.

Adjust the welder and welding technique, and repeat the test weld, if required.